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Michael Faraday (1791-1867) stands as one of the giants of early electromagnetic study. From a
self-educated bookbinder apprentice he rose to become one of the most celebrated members of
the Royal Society. But today more than a century later, two particularly erroneous items have
been associated with Faraday. One would be his invention of the bogus “lines of force” idea that
sprang from the suggestive patterns of iron filings when subjected to the action of magnets.1 The
idea persists to this day even though it is clearly not able to provide precise measurements in any
reasonable fashion. The other idea bearing his name and creating great misunderstanding is
“Faraday’s Law of Electromagnetic Induction”. Faraday was interested in “induction of various
types and surmised that if an electrostatic charge could induce a secondary charge in a distant
body, perhaps a current could induce a secondary current in a distant conductor. That guess
proved to be true. And in fact, is a correctly stated description of the phenomena.

Fig 1. Michael Faraday
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The problems, however began with the general acceptance of Faraday’s law which can be
written as:2

dt

d
Emf




That relates the emf or voltage induced into a loop conductor to the summation of the magnetic
field (which is termed “flux”) passing through the center of that loop. It’s a neat and very handy
relationship that is commonly used in science and engineering. There’s just one minor problem.
It’s not always correct. Sometimes it doesn’t work at all and when it does it creates a very wrong
impression.3 That wrong idea is that somehow the changing magnetic flux through the loop is
causing the induced voltages. That such an assumption is wrong can be demonstrated by noting
that causality is a natural law on the earth. If two actions happen at the same time they cannot be
causing each other! And that is especially true if any distance separates two actions since actions
that can transmit information have never been observed to exceed the speed of light. We notice
with regard to the above “law” that the magnetic field need not even be present at the location of
the voltage induction, as happens with a loop of wire outside a toroid. Thus, a change of flux at
the center of a wire loop purportedly causes induced emf out at the loop, outside the region
where the flux is even present. This is nothing more than the old idea so common in Faraday’s
day termed “action at a distance”. Since this idea defies causality, it has long been discredited as
bogus. Nevertheless, it somehow seems to persist in physics renamed “nonlocal” interactions.
But these days such arguments are usually reserved for quantum mechanics and are not given a
second thought in Faraday’s law.

Even Maxwell said:4 “When the number of lines of magnetic induction which pass through the
secondary circuit in the positive direction is altered, and electromotive force acts round the
circuit which is measured by the rate of decrease of the magnetic induction through the circuit”
[emphasis ours]. Note that he said the induced voltages were “measured by” not caused by the
change in the magnetic field! But Faraday, himself, only proposed causality between a current
and a secondary current at a distance. He never implied that a magnetic flux created the induced
emf. So suppose we consider a short wire of length dL carrying a current I.

We actually do know what happens in that case. The first thing we observe is that there is set up
in space about that current element what is termed a “magnetic induction”. Today this is
generally termed a magnetic field, although “field” is actually a mathematical term used to
describe a vector quantity that may vary in magnitude and direction over a region of space. But
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to avoid confusion we will also term it a field and give it the standard vector symbol B. In a
static case the law of Biot-Savart describes this magnetic field.5 We know how it acts. It has a
magnitude proportional to the current giving rise to it. It is formed in circles about the current in
planes perpendicular to the direction of the current. It falls off in intensity as 1/R2 in distance
from the current element and furthermore there is a variation in angle about the source current by
the sin of the angle between the current and radius line to the observation point. This means that
there is no magnetic field induced down the axis of a straight wire by the current in it. That
implies that if a magnetic field is the cause of induction, that straight wires have no self-
inductance. That statement is simply incorrect. Thus, this fact provides additional proof that
Faraday induction has nothing to do with magnetic fields.

The way Faraday induction actually works is that a changing current source not only creates a
magnetic field in the space around itself, but also creates an electric field. This is a real electric
field capable of accelerating charged particles and the like. But it is known from causality that
electric and magnetic fields cannot create each other.6 It turns out the actual causal source is a
current. A current element clearly sends forth both the magnetic field and the electric field of
induction at the speed of light. Both travel in straight lines from that current source. Nothing
follows the longer paths of the magnetic or electric “lines of force”.

We also know how the electric field of induction works. It travels away from the current element
in all directions at the speed of light. Just like the magnetic field from the same current source, it
is therefore delayed when observed at a distance. This is termed being “retarded”. The direction
of the electric induction field vector is always the same as that of the source current. Always.
And the E field exists in a sphere about the source current with no variation according to the
angle the line to the observation point makes with the source current. And the magnitude of this
electric field falls off as 1/R rather than the faster 1/R2 rate of a magnetic field. Finally, we note
that the magnitude of this electric induction field is related not to the magnitude of the source
current but rather to its time rate of change, which in calculus is termed it’s derivative. For that
reason, while the direction is always parallel to the current source if the current is decreasing, it
will be anti-parallel that is to say face in the opposite direction to the current source if the current
is increasing.

It is important to note here that this electric field induced by a changing current has quite
different properties from a simple electrostatic field. For that reason we shall term the induced
field Ek electrokinetic field that implies a source of “charges in motion” which is to say a
current, while an ordinary electrostatic field Es represents the usual Coulomb forces between
stationary charges. The difference in properties can be seen for example in that the divergence of
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Es is equal to 4 while the divergence of Ek is always equal to zero. Similarly the curl of Es

always equals zero while the curl of Ek = -dB/dt.

We also find there is a third retarded quantity traveling out from the current source. This is the
magnetic vector potential, termed A, which can be thought of as a “stress” thrown into space at
the speed of light. This “stress”, like the Ek field of induction is spherical about the current
source, does not depend on angle and likewise takes the direction of the current source. It also
falls off with distance at the 1/R rate. However it depends on the value of the current rather than
it’s rate of change. The magnetic Vector Potential is defined as7
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That in the case of a thin wire becomes:
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where R is the distance from the observer to a given current element IdL. A is retarded so thus
occurs in space at the same time as the retarded B and Ek fields. This means that A cannot be the
“cause” of either B or Ek. However the value of both those vectors can be calculated from A!
We find that:

AB
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Thus we see that while we can use A as a means to a solution of induction problems, it is clear
that the actual electromagnetic source of both the magnetic field (induction), B, and the induced
electric field, Ek, is the current. A is not a source of either of these actions.

You might think at this point that these clarifications are not surprising given the more than
century of physics that has elapsed since Faraday studied induction, but the true surprise is that
these clarifications together with a true representation of induction was put forth by Franz Ernst
Neumann (1798-1895), a contemporary of Faraday. While Faraday was attempting to explain
induction using his own conception of “lines of force”, Neumann started with Ampère’s
analysis.9 Neumann also included in his analysis the law found by Emil Lentz, which gave an
indication of the direction of induced currents. A major breakthrough of Neumann was the
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inclusion of the magnetic vector potential that it turns out was an analytic measure of what
Faraday had termed the “electrotonic state”. While we have already pointed out that the vector
potential, A, is retarded and thus not a source of either B or Ek , but nevertheless Neumann’s
formula can be divided in a way that shows that it stands correct.

Since the kind of electric induction we are discussing here involves only changing currents and
no motion of apparatus, it can be called “transformer” induction. This is a separate issue from
moving magnets and coils as found in electro-mechanical generators and the like. In this case if a
current is impressed on the “primary” or “source” conductor of the induction device, a voltage
will be found induced upon the ends of the open-circuit secondary or “target” conductor of the
device. The relationship between these two quantities is given by the relationship:

dt

dI
MV

primary

ijodnary sec

Where Mij is termed the “mutual inductance” between the two circuits and is given by the
Neumann formula:10
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Because in “modern” texts this formula is often derived from the bogus Faraday’s Flux law, it is
often implied that the double integrals must be about two closed loops where one is the primary
and the other is the secondary of the “transformer”. But that is not necessary even when the non-
causal vector potential, A, is incorporated into the formula. Therefore one calculates the induced
secondary potential by first integrating the electrokinetic field along the secondary conductor
giving:

S
kSecondary dLEV  


At this point we note that although Ek is not caused by A in either it’s retarded or ordinary form,
it can be calculated from A. If the circuit parts are of smaller dimensions such that the delays
produced by retardation can be neglected, ordinary vector potentials can be used, otherwise the
retarded values of A should be employed. So substituting for Ek above we find:
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Thus we have seen that the Neumann equation and not the Faraday relationship is the correct
causal formula to calculate the induced voltages from any current distribution. The Vector
potential drops out and is not needed. However the calculation of A is essentially the same
mathematics as the calculation of Ek directly so the two techniques are the same. Furthermore it
turns out that if the current is a ramp function, the retarded values are not needed no matter how
large the dimensions.11 The connection by Faraday of the change of magnetic flux through a
circuit loop to the emf induced within that loop from anther current is really simply a lucky
happenstance as both the magnetic field and the electrokinetic field are created by the same
source current and thus are related but not causal of one another. This fact highlights more than a
century of physics and engineering taking the “easy road” of assuming that if an equation states
that the left side equals the right side, it somehow implies that one side causes the other quantity.
Such assumptions are clearly unjustified without further proof.

Note that the Neumann equation not only easily explains the reciprocity law which makes Lsp =
Lps but also explains the observation of Faraday that there is no induction between perpendicular
wires

To elucidate these points I will now consider a simple induction situation that clearly
demonstrates the difficulties with the Faraday flux solutions and the ease with which simple
correct solutions can be obtained using the Neumann formula even in cases where the flux area is
less than well defined.

We are going to build an induction “transformer”. It is to consist of a 1-meter length of straight
coaxial cable. The cable consists of a superconducting foil outer conductor 4mm in diameter and
a “very thin” superconductor center conductor. The dielectric separating these conductors is
“vacuum” which in modern physics means it’s “nothing at all”. We are going to run a current
down the OUTER conductor increasing at the rate of one ampere per second. The question then
is what voltage, if any, appears between the two opposite ends of the center conductor (the
circuit is open and only voltage is measured).

We will initially use the following assumptions to make the problem simple: We will assume
that all connecting and measuring wires arrive at the coax at such right angles so as to not
contribute to the induced voltage. All “end effects” can be neglected. The coax is assumed
“long” which means its length is much longer than it’s diameter. No current is assumed to flow
in the center conductor at any time beyond the electrostatic shifts needed to achieve a measurable
potential. For that reason, by symmetry, and Ampere’s law we can see that the magnetic field is
ZERO everywhere inside the coax outer conductor where our sensing wire is located. The
apparatus is static and there is no mechanical motion or flux-cutting. Note that the physical
position of the center wire is irrelevant so long as it’s inside the outer tube.

11
Jefimenko, Oleg. D., op. cit. p. 31.
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The situation is as shown below:12

Fig. 2. Induced Electrokinetic E field from changing currents in a cylinder.

In order to make this problem simple we will use a couple of tricks. The first is that Ek just
outside the cylinder is equal to Ek just inside the cylinder, which is very thin. Next we use the
common trick, which notes that the field outside the cylinder is identical to the case where the
current in the outer tube is replaced with an identical current in the center wire. Thus we need
only find the value of Ek Ro away from the center of a fine wire. That value will equal the value
just inside the shield. And finally we note that by Ampere’s law, symmetry and the fact that the
center wire carries no current, that the magnetic field inside the tube is zero. This does not
necessarily mean that A is zero, however, but it does imply that A has a constant value
everywhere inside the tube. Hence, the value in the center is equal to the value at the edge.

We start with the electrokinetic field calculation found at the center of a wire of length 2L at
distance Ro. Note that since the source current and the sensing wire are both in the same direction
(z axis) no vector directions need to be resolved. The wire calculation is shown as:

Fig. 3. Calculating Magnetic Vector Potential to Find Electrokinetic E.

12
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The distance R from each current element to the observation point at the center of the wire at
distance Ro from the wire is given by the hypotenuse of a right triangle as seen below.

Since
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The induced electrokinetic field is given by:
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And since we’ve given a rising current at 1 Ampere per second this means that the above minus
sign that represents Lentz’ Law, will give electric fields that oppose the rising current or in the
minus x direction:
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Where we have neglected R2 compared to L2 and can use this value for the electrokinetic field at
the center of the wire and where L represents half the length of the coax rather than it’s full
length because of the way it was defined in our above derivation. Of course the induced field
along the wire is not constant but falls off at the ends but since we are ignoring “end effects” for
the moment, we can simply assume the center value applies along the entire length of the center
wire. This makes the integration of the field along that sensing wire merely a multiplication by
the length of the wire (1 meter). This then gives an EMF magnitude:
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If the coax is 100 meters long, the calculation becomes:
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Since we have chosen dI/dt to equal a rise of one ampere per second, dI/dt = 1 so the above
microvolts represent the measured induced voltages. If the current rises twice as fast then twice
the voltage value is induced on the wire etc.

If a sinusoidal current drives the system as is commonly the case, where I = sin t and thus:

tft
dt

dI
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or we cam find a sinusoidal EK with an amplitude given by:
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which for our one meter long, 4 mm diameter coax above driven by a 1 megahertz current gives
the peak value of:

voltsx
x

EMF 83.71
002.

5.2
ln26.1 

Although we neglected “end effects” it would be instructive to calculate just for fun how the
induced Ek electric field varies along the length of the sensing wire. To do this we start with
Jefimenko’s method above, but redefine the current as going from 0 to L rather than his choice of
–L to +L as in this case the two integrations will be unequal and one side cannot simply be
doubled.

It can be shown that the formula in this case is given by:
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Where the first term represents the integral from 0 to the chosen measurement position X and the
second term is the remaining integral from the position X to the end of the wire L. X in this
equation is the position along the sensing wire where one is measuring the induced field that
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takes a value from 0 to L. L in this formula represents the entire length of the Coax as opposed to
the half value of L in the above calculation. The final plot shows the variation of electric field
along the sensing wire for a 1-meter coax. It is seen that the field is rather flat over a large
percentage dropping off quite rapidly at the ends.

While it is tempting to assume that the falling induction is asymptotic to the ends of the wire,
that is actually not the case. The electokinetic Ek field has finite values beyond the ends of the
coax where there may or may not be wire where a voltage can be induced by the field. This can
be thought of as “end effect” field “leakage” that is actually calculated by this method. This
problem is difficult to set up using Faraday’s law since the choice of surface upon which to
measure the magnetic flux is not at all obvious. And even if one were to determine the surface
giving the correct results, that law does not deal with the end effects.

This correct method of calculating the induced field not only does not require the closed loops of
the Faraday equation, but also, as is seen, can actually calculate the distribution of inductance
within a system of conductors. Today, such calculations have become of increasing importance,
as micro miniature integrated circuits require greater knowledge of the current and heat
distributions in microscopic traces.

http://www.hypersphere.us/Faraday.pdf
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Fig. 4. Distribution of voltage induced along the center conductor of a 1 meter length of coax
4mm in diameter when current in the outer shield rises at one ampere per second

Correction: Note that the abscissa in the above plot has been labeled incorrectly in that the
extreme values of the above plot of 0.691 microvolts occur at 0 and 100 percent and not at the
values that seem to be shown by the plotting software.
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